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Abstract. A complete analysis of the quantum dynamical system defined by the quantum 
group SL(2,R)&U(l) is made. This quantum group, which is primarily related to the 
relativistic harmonic oscillator, is also shown to provide the quantum dynamics of a free 
particle moving in (1 + 1)-dimensional anti-de Sitter spacetime. The latter interpretation 
illustrates the capabilities of the present group approach to quantisation in dealing with 
dynamical systems in more general spacetimes. 

1. Introduction 

The use of a group as a basic structure for quantisation provides, as a rule, a precise 
characterisation of dynamical systems, avoiding certain ambiguities which are present 
in the more traditional geometric quantisation approaches. Recently, several geometric 
quantisation techniques have been developed in this spirit (see, e.g., [ l ,  21). In a series 
of papers [3,4] (for a review, see [ 5 ] )  we have introduced a group approach to 
quantisation (GAQ) which is based on associating a dynamical system to a group, the 
quantum group, which has a principal fibred structure. In this paper we carry out the 
case of the quantisation of a group built on SL(2,R). It constitutes an example in 
which, only with limited effort, an exact solution is obtained. On the other hand, and 
as is discussed at the end of the paper, the analysis presented here gives rise to the 
possibility of studying a wide range of physical systems. 

The group of 2 x 2  unimodular matrices on a field F, SL(2, F) plays a privileged 
role both in mathmatics and physics. Its Lie algebra is the starting point in the study 
and classification of the semisimple Lie algebras (see, e.g., [ 6 ] )  on F, and for F=@ 
it corresponds to an essential symmetry in physics. Recently, the group SL(2, R) [7] 
has acquired a special importance in physics because it constitutes (see [8] and 
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references therein) the only non-one-dimensional proper subgroup of the Virasoro 
group, which is essentially the conformal symmetry group in 1 + 1 dimensions. The 
structure of this SL(2, R) subgroup plays a significant role in the classification of the 
possible representations of the Virasoro group [9, lo]. In 3 + 1 spacetime dimensions, 
on the other hand, SL(2, R) is the subgroup of the ‘times’ ofthe conformal group S0(2 ,4) ;  
there exist three different kinematics, each one associated with one of the one- 
dimensional subgroups of SL(2,R) [ll-141. These ideas have been applied to the 
study of the dynamical symmetry of the magnetic monopole [ 151 and have also been 
combined with supersymmetry [16]. Finally, the group SL(2, R), as the covering group 
of SO( 1,2),  may be regarded as the de Sitter or anti-de Sitter group in a two-dimensional 
( 1  + 1 )  spacetime. 

We devote this paper to discuss some novel aspects of SL(2, R), very closely related 
to its relevance in de Sitter geometry. We shall consider a pseudoextension (to be 
defined in section 2) of SL(2, R), SL(2, R)&U( l ) ,  as the quantum group corresponding 
to a relativistic harmonic oscillator in a Bargmann-Fock-Segal-like space. After a 
suitable change of variables we will also recognise the (quantum) dynamics of a free 
particle in an anti-de Sitter spacetime (see, e.g., [17]). Although here we restrict 
ourselves to the two-dimensional anti-de Sitter space the procedure could be repeated 
for the more physical four-dimensional case. We shall also discuss carefully the 
different limits of the dynamical system (Inonu- Wigner group contractions) relevant 
to its structure: the c + 00 limit, leading to the non-relativistic harmonic oscillator (or 
particle in non-relativistic anti-de Sitter spacetime) and the o + 0 limit (zero frequency, 
flat metric) leading to the free relativistic particle. 

The paper is-organised as follows. Section 2 is devoted to defining the quantum 
group SL(2,R)OU(l)  as a pseudoextension, and to a few comments on the GAQ. 

Section 3 discusses this quantum group as the dynamical group of the quantum 
relativistic oscillator in a Bargmann-Fock-Segal-like representation. In section 4 we 
define from the group the configuration space and the anti-de Sitter metric with which 
it is naturally endowed. In both sections 3 and 4 we compare some apsects of the GAQ 

with their analogues in the older geometric quantisation scheme, and show how some 
ambiguities of the latter are solved. The non-relativistic and flat limits are also 
performed in detail in all the relevant expressions. Finally, in section 5 we comment 
on a number of quantum groups that could be analysed in connection with gravity. 

2. The quantum group Sy2,  R)&U(l) 

The GAQ [3-51 associates a dynamical system with a U( 1 )  principal bundle structure, 
defined on a group, the quantum group 6. For systems with a classical limit (see in 
contrast [18]), the U ( l )  fibred structure is determined by the fact that 6 is a central 
extension of a certain group G. In this paper, G = SL(2, R). This group is simple and 
the Whitehead lemma [19] establishes that the only extension by U ( l )  is the direct 
product one, GOU(1).  Nevertheless, it is possible to give the GOU(1)  group law in 
a way which simulates that of a true (non-trivial) central extension. We call a 
pseudoextension of G by U(1), and denote it by G 6 U ( 1 ) ,  to the direct product of G 
by U( 1 )  when its group law is given in that manner. More precisely, pseudoextensions 
are defined by 2-coboundaries on G which, in a certain contraction process, become 
non-trivial 2-cocycles of the contracted group G, (see [20] for details and the 
geometrical characterisation of this pseudocohomology). These cocycles define the 
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non-trivial central extensions 6, of G ,  by U( 1) which constitute the contraction limit 
of the pseudoextensions G 6 U (  1). 

For the case of G = SL(2, R), we can define three different contractions with respect 
to its three one-parameter subgroups H, each of which is associated with a principal 
fibration SL(2, R) A SL(2, R)/H of SL(2, R) itself. They define three families of 
pseudoextensions whose 2-coboundaries Scab are locally generated by linear functions 
S(g) on G .  These 2-coboundaries may be also globally defined as the pull-back 
(cob = T* y of the t e c h  cocycle y characterising the fibration SL(2, R) A SL(2, R)/H 
(see [21] for the SU(2) related case). Here we shall restrict ourselves to the case where 
H is the only compact SL(2, R) subgroup, U( 1). We shall write this pseudoextension 
SL(2, R)6U(1) ,  without making explicit the SL(2, R) subgroup (here U(1), in the 
general case H) involved in its definition. In the present case there should be no 
confusion between the U( 1) subgroup of SL(2, R) and the U( 1) group by which SL(2, R) 
is pseudoextended. 

To find the group law of SL(2, R ) 6 U (  l ) ,  we require an U(1)-valued 2-coboundary 
[cob(g’, g )  on SL(2, R )  involving a parameter a which in the contraction limit ( a  + 00) 

becomes a 2-cocycle for the group obtained by contraction from SL(2, R). We shall 
give the group law of SL(2,R) by means of a chart adapted to the above fibration. 
Using the fact that SL(2, R) - SU(1, l),  the elements g E SL(2, R) may be characterised 
by unimodular matrices of the form 

g = ( : :  :;> 
or by vectors in C2, 5 = ( z l ,  z2) /5+u35= &= 1. The SL(2, R) group law g ” =  g’*g may 
be obtained either from (2.1) or from (“= 8‘6, with the result 

ZI’ = z:z, + z;*z2 z; = 2 ; Z l - t  z’l*z2 (2.2) 

T(5) = 4 Z l  I z2) = (&15, &25, fa363 = ( Y l ,  Y 2 ,  Y3) 

n+ = {y  E R3/y:-y:-y: = 1, y3 2 l}. 

although, because of the unimodularity condition zTzl - z;z2 = 1, (2.2) is not given in 
terms of independent group parameters. The projection T, defined by 

(2.3) 
maps SL(2, R) onto the two-dimensional positive hyperboloid: 

(2.4) 
0’ is pointwise left invariant by the action of the U( l )  subgroup of SL(2, R) (the 
‘compact’ time, see below, defined by the matrices (2.1) with z1 = 7) = eip, z2 = 0, under 
whose action ( zl , z2) + ( z l  eip, z2 e”)). Thus, we may parametrise the bundle SL(2, R) 
(U(l) ,  SL(2, R) /U( l )  = a’) by means of the (principal bundle) local chart 

defined by 
: u, ;x  U(1)+ ..-I( Uy;)  ( Y l 9  Y2 9 7)) + (ZI 9 z2) E SL(2, R) 

Z 1 + ( 1 + y :  + y i ) ’ / 2  ) Y 2 l i Y l  7)” (1 + (1 + 2z*z)”)’~’ - 
z 2 = (  2 V P  

(2.5a) 

(2.5b) 

where U,; is an open set containing y 3  E R’ and in the expressions above we have 
introduced 
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It is obvious that @;;(y, ,  y,; t)t)’) = @,X(y , ,  y,; t))t)’ and that the identity of the group 
( z ,  = 1 ,  z2 = 0 )  is mapped by ay;  onto y = (0, 0, l ) ,  so that by projecting onto the y , ,  y ,  
plane we have obtained a local chart at the unity. By extending U,; to the whole Rc 
the chart becomes a global one. (This is in contrast with the non-trivial structure of 
the Hopf bundle SU(2, C) (U( l ) ,  S 2 )  which may be derived along similar lines by 
defining f=( taO and removing the i in (2.3) [ l s ] ) .  The inverse of (2.5) is given by 
QY;:  ( z , ,  z 2 )  + ( y , ,  y,,  t)) where y ,  and y ,  are given by (2.3): 

( 2 . 7 ~ )  ( Y l ,  Y 2 , Y J  = (i(z:z2-z,zz*), z,zz*+ZTZ2,z,zT+zzzz*) 

and t) is obtained from ( 2 . 5 ~ ) :  

(2.7b) 

The group law in terms of minimal coordinates ( y , ,  y 2 ,  t)) or ( z ,  z*, t)) is now derived? 
from (2.2) with the result 

Z z”= z’T-’+zx)+ [Z*Z’?p+ z’*zt)’] 
U’(  1 + x )  

z* 
z*l’= z * y +  z*x’+ [ ZZ*’T2 + z‘z*v - 2 3  

u 2 ( l + x )  

where in the above expressions x ,  X I ’  are merely shorthand for 

1 
x y ,  = ( 1  +y2 x ” =  x ’ x  +? (z*z’r/-’+ z’*z$) (2.8b) 

U 

and where we have introduced the parameter U’>  0 by means of the redefinitions 
z + z / u ,  ( y ,  , y 2 )  + ( y ,  , y 2 ) / u .  This will be relevant in the contraction ( U’ + 00) associated 
with the non-relativistic limit (section 3).  By taking [a’] = [ h], the variables y , ,  y 2 ,  z, z* 
have now the dimensions of (action)’/2 (the interplay between the assignations of 
physical dimensions and the contraction process is briefly discussed in [ 131). 

The pseudoextension SL(2, R ) d U ( l )  is now defined, with g’= (g, 5) E SL(2, R ) 6  
U(1) by the group law 

(g”, I”) g’”= (g’ * g, 5’l‘cob(g’, g E SL(2, R),  5 E U ( l )  ( 2 . 9 ~ )  

where g” = g’ * g is given by (2.7), 

(2.9b) 

is the 2-coboundary generated$ by exp(is(g) /h)  = T ~ ~ ~ ~ ’ ~  and t)” in (2.96) is given 

, - I  - 1  - 2 a ’ / h  
(+cob=(Tf17) 7 ) 

t Because the group action leaves R’ invariant, the group action y ’  = g ( z , ,  z,)y gives a realisation of the 
two-to-one homomorphism between SL(2, R )  and the isometry (the tridimensional ‘Lorentz’) group of the 
metric (+, -, -). 
j: The expression of the coboundary generated by S ( g )  is 

6 d g ’ ,  g )  = S(g’ * g )  - S k ’ )  - S ( g )  gCob = exp[(ilfi)5c,bl. 
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in (2.8a). The above coboundary has been chosen in such a way that it becomes a 
non-trivial 2-cocycle in the a +CO limit, in which (2.8) plus (2.9) will give the group 
law of a non-trivial extension by U(1). 

We remark that the exponent in (2.96) (the winding number) has to be an integer. 
Later on (in (4.26)) we shall relate a with the particle mass and the radius of the 
anti-de Sitter spacetime. Thus, the definition (2.9 b) introduces a quantisation condition 
for the product mcR, where R is the (real) anti-de Sitter radius. 

Let us identify the quantum group associated with the a + 00 limit of the SL(2, R ) 6  
U(l )  group. From (2.8) we obtain, by using that y 3 +  1, 

where we have relabelled the variables after the contraction ( z  + C, z* + C * ) .  
Analogously, (2.9 b) requires computing the limit of 

{ ( 2 ) 1’2[ (1 - ;*’) ”2( - 1 ; ”) + ( - 2 ) 1’2( - 2 ) ‘’2 raZ’ y * ’ h  
7 7 7  1 + X I t  l + x ‘  l + x  

which in ( 2 . 9 ~ )  gives 

(2. lob) 

where the exponential defines the non-trivial cocycle. Taken together, (2.104 b) define 
the quantum group of the non-relativistic oscillator after identifying q 2  with eiw‘, i.e. 
/3 =fat (2.7b), t being the time. This quantum group was discussed at length in [3-51. 
In terms of the variables q , p ,  the other group parameters C, C* may be written 
as 

1/2 I / 2  

c = (2) (wx+ip/m) C*  = (c) ( w x  - ip/ m ), (2.11) 

To identify the group SL(2, R ) 6 U (  1) with the symmetry of the relativistic harmonic 
oscillator another limit can be performed: the w + 0 limit. We shall show, by using 
the configuration space variables, that the contraction limit w + 0 describes the free 
relativistic particle (section 4). Thus, we conclude that we may identify the group 
(2.8), (2.9) with the quantum group of the relativistic harmonic oscillator. 

3. The quantum system associated with SL(2, W)6U(1) 

We now apply the GAQ. The first essential ingredients of the formalism are the 
left-invariant vector fields ( LIVF), which define restrictions (polarisations) on wavefunc- 
tions, and the right ones (RIVF) ,  which define the action of the group on the system 
in a way compatible with the restrictions ( LIVF and RIVF commute). By taking deriva- 
tives in the group law ((2.8) and (2.9)), with respect to the unprimed parameters at 
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the identity, we obtainf 

i a  
fi  a5 

ZkCj = - 5- = 5 

where E is the generator of the U ( l )  factor in the (pseud0)extension. In the same 
way, taking now derivatives with respect to the primed parameters we obtain the R I V F :  

2(1 + x )  

1 - a  2 a ZE., = q 2  - [ (1 + x ) '  :+-I z2 -+ i 7 17 - - i2zZ (3.1 6)  
2 ( 1 + x )  a z  a a z  :-(' a:) I 

The LIVF ( 3 . 1 ~ )  fulfil the following commutation relations: 

(3.26) 

while the R I V F  satisfy the s tme rela5ons (3.2) but for an additional global minus sign 
on the RHS; of course [any XL,  any X " ]  = 0. If we ignore the E term in the commutator 
[g,z, ,  z(2*j], which carries the Planck constant, the commutators of (3.2) are those of 
the sl(2, R) algebra in the standard basis. In the limit a -, CO, (3.2) gives 

- L  a i 
aC 2 

X(c)  = C+Z 

(3.3) 
a a a 

at7 ac ac' 2kT, = iq - - 2 i ~ - +  2ic+ - 

t Although the E term of the extension may be computed directly from (2.9), it is faster to use that 

[20], where X g t  is the vector field of the unextended sl(2,  W) algebra associated with the group parameter 
g' and L is the Lie derivative; in this way, one avoids using the expression of the coboundary (2.96). Note 
that, although we use the global parameter v, the local parameter is the angle p ;  we have a/ap = iTa/Jq 
(the same comment applies to the other compact parameter i). The exponent S(g) is in our case S(g) = 
-2a'p = -a'ut. 
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ac a )  
a a 

ac ( gk,, = - iw c - + i w c  + 7 

which generate the Lie algebra of (2.104 b )  which is given by ( 3 . 2 ~ )  and 

[2bC,, 2:c+,] =is (3.4) 

which replaces (3.26). 
The canonical left-invariant 1-form on SL(2, W)&U( 1) is a sl(2, &!)&U( 1)-valued 

1-form (see, e.g., [22]). Among its four components, we are interested here in the 
(vertical) component defined by being the 1-form dual to the vector field of the U(l) 
generator. As can be shown from the general theory such a form provides the 
quantisation form, as its expression will make it evident. This is determined by @(E) = 1, 
@(gtz,z*,T) = 0, and is given by 

1 d77 d l  
( I + % )  ‘77 i l  

e=- i[z*dz -zdz*]-2[x - l]az-+ A - .  

In the limit a +CO in which x - 1 + zz*/a2, 0 becomes 

db ONR=f i [C+dC - CdC’] - 2 C + C d p  + A- 
i l  

(3.5) 

(3.6) 

which is the quantisation form (2dp = wdt) of the non-relativistic harmonic oscillator 
as was obtained [3] from the vertical part of the canonical left-invariant 1-form for 
the group (2.10). It is interesting to remark, however, that the 1-forms (3.5) and (3.6), 
which are unambiguously given by the group quantisation formalism from their 
respective groups, are related by a simple change of variables 

c= (1 - :yl)l’2z c+= (-gz* (3.7) 

where again y, is given by (2.86) and which identifies C and z in the a 2 + m  limit. 
This indeterminancy in the association of (quantisation form) + (quantum system), 
which appears in the conventional geometric quantisation formalism where (3.5) and 
(3.6) are the only starting points, is solved when it is replaced by the correspondence 
quantum group+ quantum system, and the rest of our GAQ (in particular, the group 
definition of the polarisation subalgebra) is taken into account (see below and 
section 4). 

We now proceed to determine the wavefunction of the quantum system associated 
with the quantum group SL(2, R)& U( 1). For it, we have to determine the characteristic 
module and the maximal polarisation subalgebra. The characteristic module CO of 
(3.5) polarisation subalgebra is defined as the module generated by the vector fields 
X which satisfy ixO = 0, ivd@ = 0. From (3.5) and 

dz* A dz + 2i( zdz* + z*dz) A - 
Y3 

it is found that the characteristic module is generated by the LIVF associated with the 
compact (periodic) evolution parameter p : 

a a 
CO = ( -  x:,, , = iv  at7 - - 2iz - az + 2iz * 5). (3.9) 
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The quantum system is now characterised by wavefunctions Y ( z ,  z*, 7, 5)  on the group 
manifold SL(2, R)&U( 1) which satisfy E?P = i 9 ,  i.e. Y = lY(z ,  z*,  T ] ) ,  and 

%k,,,* = 0 & = O  V% E polarisation sublagebra. (3.10) 

The polarisation subalgebra, which is defined [ 3-51 as the maximal horizontal left- 
subalgebra containing %;, is obtained by adding %kzI (see ( 3 . 2 ~ ) ) .  It is at this point, 
when the group theoretical definition of polarisation is introduced, where the ambiguity 
implied by the change of variables (3.7) and which is inherent to the geometric 
quantisation form [see, e.g., 231 is solved. Although (3.7) brings the evolution vector 
field %:,,) of (3.9) ( ( 3 . 1 ~ ) )  into the 2:,,, (3.3) of the non-relativistic case as it did with 
the quantisation forms, this is not the case with the other vector field of the polarisation 
subalgebra, %k2) ( 3 . 3 1 ~ ) .  This has to be so, because a redefinition of the group 
parameters by means of a change ofvariables cannot alter the group structure (explicitly, 
it is seen that such a change, which does not involve 7, cannot eliminate the term in 
iVa/aq of %b2) ( 3 . 1 ~ )  to get %kc, (3.3)). The wavefunctions of the quantu? system 
are thus U(1)-equivariant functions (ZY = iY) which satisfy %F,,)?P = 0 andX:,,?P = 0. 
Writing 

%F2,Y = 0 gives y = 1 and 
cc, = l( 1 + % ) - y Q 2 ' h  P(Z, z*,  P )  

d q  i z* d q  
%--+---- - 0. 

az 2u2 1 - t ~  ap 
%k,,)?P = 0 then gives 

(3.1 

(3.1 

acp acp -- 2iz-+ 2iz* - = 0. 
ap az az* 

( 3 . 1 1 ~ )  

The final solution is given by a superposition of solutions of the type (see [21] for the 
SU(2) case) 

(3.12) G,, = 2a2/h(l + % ) - a 2 / h  [exp(-zip)( 1 + x ) - ' z * ] " .  

In the limit U + CO (3.12) gives 

@,, = [exp(-C+C/h)]  exp(-iwt)C."'. (3.13) 
We notice in (3.13) the appearance of the Bargmann weight factor for the non-relativistic 
harmonic oscillator. Thus, the wavefunctions (3.12), as well as (3.11b, c),  go to their 
non-relativistic counterparts [3-51. 

In the CAQ, the basic quantum operators are given, apart from a constant factor 
involving h, by the R I V F .  The one which generates the compa:t (U( 1) c SL(2, R) time 
translations is gjven by %&, (3.lb);  in terms of r = 2p/w, E = ihw/2%?,, = iha/ar-i 
and we obtain EY,, = nhwq,, .  We note at this stage that the non-appearance of the 
vacuum energy additive term, h/2,  is a consequence of the fact that the CAQ provides 
the correct ('normal-ordered') form for the quantum operators. The action of the rest 
of the operators is zE,'P,, - ( n  - l) 'Pk,+A and z4:.,'P, - n ' P n - ,  . For the non-relativistic 
oscillator, for instance, the operators C and C' are given by [4,5] 

(3.14) 
* +  C = - h  exp(-iwt) 

t The factor f in the definition of E has been introduced because the initial group law ( 2 . 8 ~ )  had to be 
given in terms of v 2  (for the 2'' and z"* part) to avoid a square root vi '>  in the 7" part. 
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Using (3.14) we find 
A 2+@* = h@.,+l C@, = nh@,,-l e+?@,, = nh@,. (3 .15)  

Thus, we conclude that our energy operator is just given by 2+& and differs from the 
prescription $( 6+& + &e+) in the term (hw)/2. The situation is similar in the relativis- 
tic case ( 3 . l b )  and (3.12) provided we compare with the squared energy operatort. 

4. The relativistic harmonic oscillator in configuration space 

Let us make the change of variables 

( z ,  z*, p ) + (x, p ,  xo 3 ci) 
(4 . la)  

1 / 2  1 / 2  .=(E) (wx+ip/m) .*=(E) ( w x  - ip/ m ) 

2p = sin-’[ (Px - A p ) ( p 2 /  mw + mwx’)-’] (4 . lb)  

where w = mc2/a2 and P and A are defined in (4.2d) below. The change (4.1) transforms 
the group law (2.8~1) into 

K 
(p‘pO+pP’O) -- ( p O x O - p x ) x ’  1 

= mc A 

XP‘ 
mc mc 

IO 0 
fa = px + - + Ax ’0 ( 4 . 2 ~ ~ )  

‘ , - p ’ X O  X P ’ O  
x --+-+AX‘ 

mc mc 

where 

1 w 2  
K = - = -  A = [ 1  - K ( ( X ~ ) ~ - X * ) ] ” *  (4.2b) 

so that R has dimensions of length (de Sitter radius), p o  is the solution of the mass 
shell condition (see (4.9a)), 

R 2 -  c2 

K 
A’ ( p 0 I 2 - p 2 + - (  O X O - ~ X ) ~ =  m*c2 

P O =  KPXXO+ A P O  

1 + K X 2  

and 

(4.2d) 

(The definitions (4.2d) are introduced because we shall see (4.11) that Po, P and A 
are Noether constants of the motion.) The quantisation condition associated with the 

tATo be more precise, we must coFpare the expression i( i*?+Z+) with t,he squ_ared energy operator 
E 2 = ( z R  ( 7 )  -E)’. We have now E 2 = t ( i + i + i i + ) + ( f h w ) Z .  The change X&,-+Xp,,-E destroys the 
pseudocohomology and puts the observables in a standard form. 
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winding number in (2 .96)  tells us, using (4.2b), that m c R / h  has to be a half-integer. 
This number relates the mass mc with the mass correction which appears in the anti-de 
Sitter Dirac equation in a (1 + 2 )  flat space [24].  

The SL(2,R) group law (4.2) has now to be completed with the 2-coboundary (2.9) 
A defining the U( 1)-pseudoextension in the new coordinates ( p ,  xo, x, 5). In them, the 
L I V F  and R I V F  of SL(2, rW)&U( 1) and their commutation relations are given by 

- Po a mcx - XL =--+- - - 
("  mc ~p Po+mc 

' R  a x, ,y  = .I - 
axo 

(4.3) 

(4.4) 

K a a Pmc - --(pOx'-xp)-+.\-+- - 
.1 ap ax P + m c  

- 

1 -  1 
mc mc [2FP,, 2)J =- x;TIJ) +E ['%fp,, 2hI = - % ,  

(4.5) 2),J = mcK%:,, [Z,all]=O. 

The quantisation form is found to be 

where, for the sake of simplicity, we have retained the old time variable p in the exact 
d p  term. 

We now show again that the group structure provides all the information which is 
required for the description of the dynamical system in configuration space. In 
particular, i t  dejines spacetime itself and its metric. To see it, we now look for the 
trajectories of the L I V F  generating the characteristic module of (4.6), Xkyo,. From its 
expression in (4.3) we find 

_-  dp - - mc'Kx. dx P _ - _  - dx' p 0  
d r  m d r  m d r  

From (4.7) and ( 4 . 2 ~ )  it follows that dpo/dr  = -Kmcxo and 

- (4.7) 

(4.8) 

We thus obtain the equations of the geodesics of a particle in a bidimensional anti-de 



Dynamics on SL(2, R) 6 U(1) 717 

Sitter universe embedded in a flat three-dimensional space of coordinates (x’ ,  x ,  w ) ,  
K ~ r y ~ ’ l ~ Y  + w 2  = 1 ,  characterised by the metric (see, e.g., [ 171) 

(4.9a) 

g ” ” ( X )  = v F ”  - K x ~ x “  ( P ,  v = 0,1) (4.9b) 

where vPv = (+, - ), Indeed, rewriting (4.6) in the usual form 0 = - p ,  d x P  + h d & / i l  
by ignoring here the inessential exact part in d p  we obtain 

(4.10) 

where g,, is given by ( 4 . 9 ~ 1 ) .  The mass shell condition ( 4 . 2 ~ )  is then gPvpPp’  = m 2 c 2 .  
We shall not discuss the classical limit. Ignoring the U ( l )  part hd&/i& in (4.6) 

might appear as a simple way of performing the h + 0 limit; nevertheless, in the GAQ 

the classical limit is more properly obtained [3-51 by substituting the additive group 
R for U ( l )  (see the appendix). Similarly, we shall not discuss the quantisation in this 
(evolution space) parametrisation. Indeed, in this case Kahler-like polarisations are 
required (SL(2, R) /U( l )  is a Kahler manifold) and this would lead us back to repeat 
the quantisation already performed in Section 3. Let us compute instead the Noether 
invariants, which in the GAQ are obtained [5,25, appendix] by computing inR@ from 
(4.4) and (4.6). We obtaint 

i2i.R I P l  0 = ( p o x  - x o p ) / m c =  A 

i n , q , O = ( P O - m c )  (4.11) 

i ,q : ,@ = - P 

which allow us to rewrite the mass-shell condition ( 4 . 2 ~ )  in terms of constants of the 
motion: 

( p O ) ’ - p 2 - ~ ~ ’ ~ 2 ~ ’ =  m I c ) .  (4.12) 

We may use the Noether invariants (4.11) to give the generalised Poisson brackets 
of our formalism. (They are generalised because, on the group manifold, dO is not a 
symplectic form.) They are given by 

{ j x , o I  - R 0, j x , h $  - R 0) E i[nc“,.2,”,10 (4.13) 

and reproduce the commutation relations of the group algebra. By taking the quotient 
by the characteristic module ~ ~ y ~ l ~  (something the GAQ does not require for the 
quantisation) the ordinary symplectic Poisson brackets may be recovered [3-51. 

To conclude, we mention the c --* cc and w + 0 limits in the present parametrisation. 
It is simple to check that the c + 0 limit reduces the last line of (4.1 b )  to 2p = sin-“; 
and, since 2/3 =ut, the ordinary time is given by t = (sin-’wf)/w. Then (4.2a), (4.3)- 
(4.6) and (4.11) go to their analogues for the non-relativistic harmonic oscillator [3-51, 

t I t  may be easily checked that the three constants of the motion A ,  P ” ,  P below coincide with those given 
in [24], formulae (4.8), (4.9) ( c 5 -  w c / w ,  t 0 = x o ,  E ’ = x ) ,  
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a dynamical system which may also be interpreted as a free non-relativistic anti-de 
Sitter particle. (For this limit, the exact d p  part in (4.6) cannot be ignored, because 
this part comes from the coboundary generating a cocycle when C + C O  and thus 
contributes to the limit of 0 in an essential manner.) The limit w + 0 ( R  + CO; K + 0; 
A + l ) ,  on the other hand, makes the metric (4.9) flat and transforms (4.2a), (4.3)-(4.6), 
(4.11) and (4.12) to those of a free relativistic particle [13] whose energy has the rest 
mass substracted, as is evident from (4.2d),  (4.6) and the second equation in (4.11). 

5. Conclusions and outlook 

We have completely determined the dynamics associated with the SL(2, R) group. Two 
different physical aspects have been considered. First, and by means of the w 2  + 0 and 
c + CO group contractions (performed on both the group law and the wavefunctions), 
we have seen how the SL(2, R) dynamics corresponds to what we may call a relativistic 
harmonic oscillator. The related Fock space in its present form is of a great interest 
as it is the starting point for the study of the representation of the Virasoro group (see 
[26] and references therein). On the other hand, the same group has been seen to 
describe the quantum dynamics of a ‘free’ particle moving in ( 1  + 1 )  anti-de Sitter 
spacetime. In particular, we have obtained the metric and the geodesic equations from 
just the group manifold. The analysis of these equations, together with the Noether 
invariants, also defined in a natural way, permits the definition of a configuration space 
for the above constructed harmonic oscillator. The Noether invariant P” associated 
with the time translations has a simple expression in terms of the ‘potential’ m2w2x2  
(4.2d) in contrast with the p o  appearing in the mass shell equation ( 4 . 2 ~ ) .  

The above study of the SL(2, R) group could be extended to more realistic spacetime 
dimensions by taking the SO(4.1) or/and SO(3.2) groups as the starting symmetry. In 
so doing, the only problem we would find would be the complexity of the exact group 
law when written in an adequate parametrisation, i.e. in terms of parameters closely 
related to physical quantities. Otherwise the quantisation would be achieved by exactly 
the same steps followed in the previous sections. Furthermore, we could develop the 
study sketched in [ 141 concerning all possible dynamics associated with the conformal 
group S0(4,2). We should then obtain the off-shell dynamics of a free particle moving 
in de Sitter, anti-de Sitter and Minkowski spacetime, respectively, according to what 
one-dimensional subgroup of SL(2, R) c S0(4,2) is chosen as the structure group of 
S0(4,2). The group laws, LIVF,  RIVF,  etc, of the different possible kinematical groups, 
including the conformal group, have already been derived by using a symbolic computer 
program [27]. 

An alternative way of dealing with very involved group laws is also being applied 
successfully. A formal power series ( in  the sense of formal groups [28]) can replace 
the exact group law so that the essential of the dynamics becomes manifest in the few 
lowest orders. This technique, already used in infinite-dimensional Lie groups 
[26,29,30], may equally be applied to finite-dimensional ones and, in particular, to 
the largest kinematical group S0(4,2).  

The conformal group law will allow us to investigate a different direction also 
concerning gravitation. The idea is to substitute the S0(4,2) group for the Poincari 
group in a field theory of massless particles. For instance, an infinite-dimensional 
group law has been found [3 13 which reproduces the (Gupta-Bleuler) quantisation of 
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the (free) electromagnetic field in ordinary Minkowski spacetime. If we replace the 
PoincarC group contained in this group with the conformal group, the specific conformal 
transformations could be related to accelerations violating, in a definite way, the 
classification into creation and annihilation operators defining the Fock space of states. 
This approach could be an appropriate framework for studying field quantisation in 
the presence of gravity, Unruh effect [32], etc. 
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Appendix. The quantisation form, the classical limit and the PoincarbCartan form 

In this appendix we explain the connection between the PoincarC-Cartan-Hilbert form 
of a classical system (see, e.g., [25,33]) and the canonical form provided by the GAQ, 

and discuss the derivation of the Noether invariants [5,25]. Restricting ourselves here 
to dynamical systems associated with groups which are central entensions or pseudo- 
extensions (our present case), the GAQ associates the quantum system to the U(1) 
extension, 6, and the classical counterpart to the extension by R, e. In this second 
case, the equivariance condition EY = iY for the wavefunction is replaced by aS/ax = 1 
where x parametrises R and S is the Hamilton-Jacobi function. Since x now is not 
an exponent, it may take the dimensions of an action, and thus h is no longer necessary. 
The expression of the quantisation form and its classical counterpart may be written 
as [3-51 

@ = Opc+dX. 

Their common term, Opt, is the PoincarC-Cartan form. Although the difference 
between 6 and OPc is an exact 1-form, and thus the classical trajectories (in q and p )  
are the same, the extra term d x  allows us to define symmetries by the strict invariance 
condition L,@ = 0, where x is a R I V F  on G, rather than by LxOpc = df where X is a 
RIVF on the unextended group G. In the first case, the Noether invariant is i z6=  
ix OPc + x x ;  in the second case it has to be defined by ixOpc -f: The presence of both 
f and the component x x ( = - f )  is a consequence of the cohomology (or 
pseudocohomology [20]) of G, and not of the spacetime itself; this is one of the reasons 
for trying to build the dynamics on groups and not just on spacetime. Notice, finally, 
that the Noether invariants are not necessarily associated with 6; obviously, the same 
result is obtained from iad, as used in section 4. 

We refer to [ 5 ,  251 for a detailed discussion. 
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